DOCUABNT RESUNE | |
IR 001 298

BD 097 918

AUTHOR Danielson, Ronald L.; Nievergelt, Jurg

TITLE An Automatic Tuator for Introductory Proqranaing
Students.

ISSTITUTION Illinois Univ,., Urbana. Dept. of Computer Science.

SPONS AGENCY ¥ational Science Foundation, Washington, D.C.

PUB DATE T4

NOTE 9p.

EDRS PRICE . MF-$0.75 HC-$1.50 PLUS POSTAGE

DESCRIPTORS *Computer Assisted Instruction; *cOnputer Programs:

| Coaputers; *Computer Science Education;
Ipdividnalized Instruction; *Problem Solving;
‘ : *Programed Tutoring; Tutorial Programs
IDENTIFIERS *PLATO 1V; University of Illinois
ABSTRACT

A progran was developed to use the PLATO IV system of
the nniversity of Illinois to help students solve typical programing
problems, The program tries to approximate a near-ideal situation in
‘which each student receives correction of logical errors and coaments
on good programing practice as he goes along in a one-on-one tutorial
environment. The tutor program utilizes an AND~-OR graph as a
representation of all reasonably correct approaches to the particular-

problem, as well as many of the wrong approaches introductory

- students are likely to attempt. The computer-assisted instruction
- program gives students the personal attention they need for le&rning
the problem solving of computer programs. (¥H)

ER&)(a8

An Automatic Tutor
for ,
Introductory Programming Students®

'Ronald L. Danielson
- - Jurg Nievergelt

Department of Computer Science
University of Illinois

‘ U BEPARTMENT Op ‘
Urbana, Illinoi EDUCA NuALTH,
s Illinois umm:“’",}:

HAY BEEN REPRQ
C AS RECE (v ROM
T™E PEQSON on NGAN::At:‘ozg;mm -
l‘DhOP!N!NS

NECFSS
SENTOF Ficiag *Mmﬁn?“,”“ Y RFPRE

Introduction EDUCATION 505: 110N Dk moy

ATING 1T POINTS OF yig

i
Beginning with the iork of Dijkstra [2], there has been & growing
interest in the computing field in the use of froper program structure
in the solution of programming problems. Considerstions of ease of
debugging and program maintainability place inéréasing importance on

" teaching g00d prograus structure as an aid to problem solution.

Unfortunately, as Ories[6] has noted, while programming is essen-
tially a problem solving activity, introductory programming courses
typieally concern themselves with the syntax of a particular program-
ming language, and a few more or less relevant applications, but say
nothing sbout how to solve a problem in general.

This is due to a number of factors, such as the problems of simply
getting students to write correct solutions, as well as the dilficulty
of presenting the concepts involved in structured programming in a
large lecture environment. A near-idesl situation might bde for each
student to construct his solutions in a one-on-one tutorial environ-
ment, enabling him to receive correction of 1ogi;a1 errors and comments
on good programming practice as he goes along., There is Just not enough
individual attention of this sort in the typical system of using teach-

* This work was supported in part by the Hational Science Foundation under
Grant No, US NSF EC-41511,

o m—

page 2
ihg assistants and gradérs in conjunction with large lecture Sections.
Consequently, most students are never able to develop problem solvins meth-
ods vhich result in well-structured solutionS.

Previous attempts at developing machine tutors of programing [4,5,7, 10}
have not filled this need, primarily because of the simple problem examples
they are concerned with and thelr inability to provide useful comments on
the student's prcblem solving technique, as well as his particular solution.

This paper discusses an automatic tutor of prosramming, implemented on
- the PLATO IV CAI system [1] as a part of an automated instructionhllsyﬁtem
for computer science being geVglépéd at the Univérsitr of Illinois [8].

This tutor éipoées the ibtroductory student to structured programming
. concepts and top-down problem solution techniques by means of example,
The student develops (on-line, using an approach based on stepwise refine-
ment -{11]) & solution to a single, relatively complex programming prob
lem {symbolic differentiation of a polynomial). Student and tutor engage
in an interactive dialogue during this’problemAsolving prwceés,'the'tutor
providing hinﬁs regarding solution steps, and comments sbout program struct-
ure and efliciency., A samall sample of the Lypes ol responses ihe tutor
might make is presented in Fig. 1.

Tutor's knowledge of solutions

Clearly, for the tutor to provide meaningful comments and assistaﬁce to
all students, it must possess a detailed knowledge of the solution space for
the particular problem with which it is concerned.)Jur tutor utilizes an
AND-OR graph (Fig. 2 is a small portion) as a representation of all reason-
able correct approaches to the particular problem, as well as many of the
wrong approaches intréductory students are likely to attempt,

An OR node represents a point in the development of a solutioq where
there are several (equally correct) acceptable approaches, and the student
may continue a correct solution by following any of the branches out of the
node. An AND node, on the other hand, represents a point at which there are
several tasks which must all be done in order for the solution to be correct,
and the student must traverse all branches out of the node to achieve a

correct solution,

Tutor: Tell me how you intend to proceed, @ '
| [The tutor's standerd prompt]

Student: I don't know.
T: Try to think of a way to breakvthe problem ihto simpler subprodblems.
[A gentle hint for an AND node, There
are several levels of hints for both
types of nodes] | .
8¢ Look for any special cases, ‘
T: OK. let's call this task 1.
S: Then consider the general case,
T: OK. Let's call this task 2,

Nolr let's consider task 1.
Tell me how you intend to proceed,

S: I want tq gee if the.derivaxive'is zero,

T: OK, Let's call this task 1.1l. ‘ ~
[A refinement at an AND node]

L]

[]

.
.

T: Tell me how you intend to proceed,
[See Fig. 2]

S: I'm going to loop through the term looking for what I'm differentiating by.
[This input matches an error branch]

T: Try using built-in functions instead,
[So the tutor displays the explicit hint,
but the current node remains unchanged]
S: Maybe I want the INDEX function,

T: OK.

Author's comments in brackets []

Fig. 1

| | | e 4
‘ | - o _‘ check if 2 48 in 2

[any indication of using a loop . Choose one's TR
results in teking the ERKOR Lrunchi] Refine using English
Progrom in PL/1

ER;R
using a loop | _
: using the INDEX function
gcan the string - A : ' '
looking for % X y¥ith built-in functions ‘
use a DO staterent / throurh charactor string operations
DO, MHILE(
' [
[the tutor is forcing
the use of PL/1]
use built-in . ' This can easily be written
functions insteed ' in PL/1. Try!
ERROR / BRROR
IF INDEX(T,Z)=0 V1i=INDEX(Z,T);
THEN RETURE('0');
*
V1=INDEX(T,2)
DCL V1 FIXE
BIN(31); .

you will need the y ‘ - the arguments
valuc of the INDEN are reversed

several times
[this method can easily

handle anticipated
PL/1 errors)

Authior's cotments in bragketa {)

!‘i"?a G

| puge 5
Branches between nodes are associated with English phrases Or program-

ming language statements which the student must enter to traverse the graph.
The next node in such a traversal is selected Ly the tutor based on the cur-

rent node type and the student's inputs. Branches nay be regular hranches.
traversed in response to correct 3teps in a pwoblem solution, or error branch-
es, which lead to detailed remedial camments which are presented to the student.
Note tham such a sraph represents all sspects of a problem solution. A
path through the graph traces the refinement process the atudent went through
in developins 8 solution, and the tip ‘nodes, or more properly, the programming
~ language statements associated with the branches leading to the tip nodes,
) represent the actual program which solves the problem. This represehtation 18':
qnite similar to the decision structure noted by Ells and Freeman [3] in a
review of the design process of several 1arge software projects. _
The claim of being sble to represent all reasonable solutions to 8 problem, |
as well as a few wrong approaches, as an AND-OR graph clearly requires some
Justification. Intuitively, one feels that the number of possible solutions
must increase enormously as the complexity of the problem increases. Undoubte
edly, this would be true if we were considering every correct solutions how-
ever, we are considering only "good" solutions, which makes an important dif-
ference, Many of the possible.sclutions (espeéially the solutions proposed
by introductory students) may be immediately rejected on the basis of "good-
ness". Thus paths rebresenting inefficient or poorly structured solutions
need not be included in the graph, even though such solutions may be correct
in a strict sense. At most, such soluticns will be one of the plausible
wrong approaches. Further, the use of a graph form, as opposed to a tree,
allows maximum common utilization of sub-portions of the graph, These factors
significantly reduce the number of nodes the solution graph rmust contain, and
enable us to use such a representation.

Student-tutor interaction

The existence of a natural lansﬁage, interactive dialogue between student
and tutor is an essential part of our tutoring system. It is through this
medium that the student indicates the refinements to be made in achieving a
problem solutinn, and that the tutor provides hints and comments, and controls

the traversul of the solution graph,

. : ~ 4 pnge 6

The FLATG IV author language, TUTOR. provides a facility for dialogun
control which is essentially a simple keyword parsing scheme (see {9] for
details). In general, such a scheme is not adequate for conducting & nat-

ural language discourse; however, the rigid local context provided by the |
current position in the solution graph (the only relevant inputs are assoc-
iated with branches leaving the current node) limits the inputs the student
might mske, and allows our tutor to understand" the input and match a branch
in the solution graph a 1arge percentase of the time, A

- It is unlikely. of course, that succesive student inputs will fbllow
exactly the sequence expected by the solution graph. At any given node,
some of the meaningful student inpuxs will match branches leaving that node.
some uill coalesce several levels of the solution graph into s single input.
and some vill mateh single branches at a greater depth into the graph.
Inclusion of all possible student inputs in the solution graph would cause
a tremendous increase in the number of branches leaving any node. Instead,
‘we have chosen to include only the most likely student inputs, based on
observation of students solving the problem, and the tutor conducts a
depth=-firsi search of the solution grapn in the vicinity of the current
node, attempting to match the student ihput to a branch further do#n
the graph. ‘Depth of the search is comtrolled by information on the aver~
age number of levels spanned by the student's previous inputs.

The tutor assigns "task nsmes" to refinement steps as they are inmput by
the student, based on the type of the current node in the solution greph. If
the current node is an AND, several tasks will replace the old one, and an
additional digit is added to the task name for each new task. That is,

cle2 figure total cost
becomes

1.2.1 ’ subtract trade-in
l.2.2 add sales tax
'On the other hand, if the current node is an OR, the new task simply replaces
the old one, and the task name is unchanged. The student may preface each
task name with an identifying letter if he so desires.
Task names Bre important for gseveral reasons. Perhaps the most important
is that they provide an easy and precise way for doth the student and tutor to

identify a particular task. Thus the tutor can display a "now refining

A . page T
task ' message so the student is always sure which task is being discussed,

and the student can refer to task names in his input. This could be accom-
plished by simply using line numbers on the screen, but task names have the

added advantage of indicating the history and relatinnship of statements,
"without making the underlyins solution sraph explicit. That is, statements
F.2.3. 1.2 and F. 2.3.1.3 are brothers, having only recently been derived from
a common father. On the other hand, tasks 3.2 and L.l have no common history.
Gries [6] recormends use of indentation to indicate the relationship between
various tasks described in the step-wise refinement‘process.’ Howeier. on a
medium with a limited extent in both horizontal and vertical directions (such
‘as the PLATO IV plasi'~ panel), the use of task names indicates task relation-
- ships Just as clear. while simplifying the screen management problem.

t

" Conclusion

It is generally agreed that introductory programming courses are not
sufficiently concerned with teaching problem-soclving methods and structured
programuing coucepts. Oue way for students to learn these ideas is by fol-
lowing example problem solutions, but there are seldom enough teachers or
graders available to provide such personal atten*ion. Under these conditions,
a CAI tutorial system which uses an interactive diaslogue to guide a student
through a top-down solution to & complex programming problem becomes an
attractive ldea. This paper has discussed one such systea.

The heart of the system is an AND-OR graph representing both the student's
solution process and the solution program for a complex problem. Student and
tutor traverse this graph in the process of solving the prdb%em. There is a
great deal of effort involved in developing auch a solution graph for a sizable
problem. However, such a representation provides several adventages which
pake the effort worthwhile, namely:

(1) it allows the tutor to effectively engage in a natural
language dialogue using a simple parsing scheme.

(2) it enables the system to provide detailed comments on

" both the student's solution and his problem solving
techniques.

page 8
(3) it allows such a machine tutor to deal with re.the.r large

~ problems, providing additional emphasis of the need for

~good program structurs and proper problem solving methods.

page 9

, | N

1.
2.

3.

9.

0.

Alpert, D, and D, L. Bitzer, "Advances in Computer-based Bducation",
Seience 167 (1970% PP 1582-1590 - ‘ .

Dijkstra, E. W., "Notes on Structured Programming”, Technical Report =
No., 70-WSK~-03, Technological Uaniversity, Eindhoven, The Retherlands,
- 1970 o | | S

Ells, Thﬁ\D. and Peter Freeman; "Design Rationalization df‘Thr&é BASIC

Systems", Tecnnical Report No. 38, Department of Information and
Computgr Science, University of California, Irvine, November, 1973 -

Fenichel, R. R.,‘J. ﬁeizenbanm and J,‘C; Yochelson, "A Progfam to Teach

Prograrming”, Comm. ACM, Vol. 13 (1970), pp 141-1L6

Feurzeig, W., P. Wexelblat and R. C. Rosenberg, "SIMON - A Simple
- Instructional Monitor", IEEE Transactions on Man-Machine Systems, -
' Vol. MMB-11, No. b, December, 1970, pp 174-180

Gries, David, "What Should We Teach in an Introductory Programming
Course", SIGCSE Bulletin, Vol, 6, No, 1, February, 197k, pp 81-89

Koffman, E. B. and S, E. Blount, "A Modular System for Generative CAI
in Machine-Language Prograrming", Technical Report, Computer
Seience Group, Electrical Fngineering Depextment, University of
Connecticut, December, 1973

Nievergelt, Jurg and Edward M. Reingold, "Automating Introductory
Computer Science Courses", SIGCSE Bulletin, Vol. 5, No. 1,
February, 1973, pp 2k-25

Tenczar, P. and W. Golden, "Spelling, Word, and Concept Recognition",
CERL Report X-35, Computer-based Education Research Laboratory,
University of Illinois, October, 1972

Ward, Darrell L., "Interactive Directed Programming in Computer
Assisted Instruction”, unpublished Ph. D. Dissertation, Texas A&M

University, August, 1973

Wirth, N,, "Program Development by Stepwise Refinement", Comm. ACM,
Vol. 14 (1971), pp 221-227 -

