
www.manaraa.com

ED 097 918

AUTHOR
TITLE

INSTITUTION
MIS AGENC!
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCURENT RESUME

12 001 298

Danielson, Ronald L.; Nievergelt, Jurg
An Automatic Tutor for Introductory Programming
Students.
Illinois Univ., Urbana. Dept. of Computer Science.
National Science Foundation, Washington, D.C.
74
9p.

HF-$0.75 HC-91.50 PLUS POSTAGE
*Computer Assisted Instruction; *Computer Programs;
Computers; *Computer Science Education;
Individualized Instruction; *Problem Solving;
*Programed Tutoring; Tutorial Programs
*PLATO IV; University of Illinois

A program was developed to use the PLATO IV system of
the University of Illinois. to, help students solve typical programing
problems. The program tries to approximate a near-ideal situation in
which each student receivescorrection of_logiCal errors :and comments.
on good programing practice as he goes along in a one-on-one tutorial
environment. The tutor program utilizes an AND-OR graph as a
representation of all reasonably correct approaches to the particular
problem, as veil as many of the wrong approaches introductory
students are likely to attempt. The computer-assisted instruction
program gives students the personal attention they need for learning
the problem solving of computer programs. (NH)

www.manaraa.com

aft

An Automatic Tutor.

for

Introductory Programming Students*

Ronald L. Danielson
Burg Nievergelt

Departmtt of Computer Science
University of Illinois

Urbana, Illinois

Introduction

4$ DISPARITEADIAT OP REALM.
SIDLICA_ T1ON WIELPARE

DATRDPIAs NifIT114/711 DPSOMA**
415 POCUVIF IV? tita!S REER REPROoticED ERA(L It As RUT WED *PORTt*st PERSON OR oac.AIN irA ttot, curaGtpeAtekcp IT POINTS oc vottlit Oa OPINIMESSTATED DO NOT AIECEssARII y PilfSERI' 0; fit IAL

TtOlyAt togs ?I. rt, TF DsERtiC AT re% PCS, T(Cpy ;kat rt;

Beginning with the work of Dijkstra [2], there has been a growing

interest in the computing field in the use of proper program structure

in the solution of programming problems. Considerations of ease of

debugging and program maintainability place increasing importance on

teaching good prograL, structlAre as an aid to problem solution.

Unfortunately, as Gries[6] has noted, while programming is essen-

tially a problem solving activity, introductory piogramming courses

typically concern themselves with the syntax of a particular program-

ming language, and a few more or less relevant applications, but say

nothing about how to solve a problem in general.

This is due to a.number of factors, such as the problems of simply

getting students to write correct solutions, as well as the Ifl'ficulty

of presenting the concepts involved in structured programming in a

large lecture environment. A near-ideal situation might be for each

student to construct his solutions in a one-on-one tutorial environ-

ment, enabling him to receive correction of logical errors and comments

on good programming practice as he goes along. There is just not enough

individual attention of this sort in the typical system of using teach-

* This work was supported in part by the National Science Foundation under

Grant No. US NSF EC-41511.

www.manaraa.com

page 2

ing assistants and graders in conjunction with large lecture sections.

Consequently, most students are never able to develop problem solving meth-

ods which result in well-structured solutions.

Previous attempts at developing machine tutors of programming 145,7101

have not filled this need, primarily because of the simple problem examples

they are concerned with and their inability to provide useful comments on

the student's problem solving technique, as well as his particular solution.

This paper discusses an automatic tutor of programming, implemented on

the PLATO IV CAI system [1] as a part of an automated instructional system

for computer science being developed at the University of Illinois [8].

This tutor exposes the introductory student to structured programming

concepts and top-down problem solution techniques by means of example.

The student develops (on-line, using an approach based on stepwise refine.

meat [11]) a solution to a single, relatively complex programming prob-

lem (symbolic differentiation of a polynomial). Student and tutor engage

in an interactive dialogue during this problem-solving process, the tutor

providing hints regarding solution steps, and comments about program struct-

ure and efficiency, A satin sample of the Wpm; or responses the tutor

might make is presented in Fig. 1.

TUtor's knowledge of solutions

Clearly, for the tutor to provide meaningful comments and assistance to

all students, it must possess a detailed knowledge of the solution space for

the particular problem with which it is concerned.)ur tutor utilizes an

AND-OR graph (Fig. 2 is a small portion) as a representation of all reason-

able correct approaches to the particular problem, as well as many of the

wrong approaches introductory students are likely to attempt.

An OR node represents a point in the development of a solution where

there are several (equally correct) acceptable approaches, and the student

may continue a correct solution by following any of the branches out of the

node. An AND node, on the other hand, represents a point at which there are

several tasks which must all be done in order for the solution to be correct,

and the student must traverse all branches out of the node to achieve a

correct solution.

www.manaraa.com

Page 3

Tutor: Tell me how you intend to proceed.

[The tutor's standard prompt

Student: I don't.know.

T: Try to think of a way to break the problem into simpler subproblems.
[A. gentle hint for an AND node. There
are several levels of hints for both
types of nodes]

15: Look for any special cases.

T: OK. Let's call this task 1.

S: Then consider the general case.

T: OK. Let's call this task 2.
Nor let's consider task 1.
Tell me how you intend to proceed.

13: I want to see if the derivative is zero.

1% OK. Let's call this task 1.1.
[A refinement at an AND node)

T: Tell me how you intend to proceed.
[See Fig. 2]

3: I'm going to loop through the term looking for what I'm differentiating by.
[This input matches an error branch]

T: Try using built-in functions instead.
[So the tutor displays the explicit hint,
but the current node remains unchanged]

S: Maybe I want the INDEX function.

Ts OK.

Author's comments in brackets [3

Fir. 1

www.manaraa.com

[any indication of using a loop
results in taking tie MOH brunch

PsinfI, a low,
using, the INDEX function

scan the strinr
looking for L with built-in functions

use a DO staterent throuf character string, operation n.

DO V=

DO WHILE(

ER

check if Z is in T

Choose one:
Refine using English
Program In PL/1

[the tutor is forcing
the use of Mil)

use built-in This can easily be written
ft.nctScn, ingtg.od in PL/3. Try!

you will need the
value of the INDEX
several times

ROR

IF rumx(Tsz)= V1=INDEMZ,T);
THEN RETURN(t 01);

V1=INDEX(T,Z
DCL V1 FIX!.

131N (31);

AuLhor'n comt.nts in br.,okto-:1 i)

the arguments
arc reversed

[this method can easily
handle anticipated
P1/1 errors]

www.manaraa.com

page 5

Branches between nodes are associated with English phrases or program-
ming language statements which the student must enter to traverse the graph.
The next node in such a traversal is selected by the tutor based on the cur-

rent node type and the student's inputs. Branches may be regular branches,

traversed in response to correct steps in a problem solution, or error branch-

es, which lead to detailed remedial comments which are presented to the student.

Note that such a graph represents all aspects of a problem solution. A

path through the graph traces the refinement process the atudent went through

in developing a, solution, and the tip nodes, or more properly, the programming

language statements associated with the branches leading to the tip nodes,

represent the actual program which solves the problem. This representation is

quite similar to the decision structure noted by Ells and Freeman [3] in a

reviewiof the design process of several large software projects.

The claim of being able to represent all reasonable solutions to a problem,

as well as a few wrong approaches, as an AND-OR graph clearly requires some

justification. Intuitively, one feels that the number of possible solutions

must increase enormously as the complexity of the problem increases. Undoubt-

edly, this would be true if we were considering every correct solution; how-

ever, we are considering only "good" solutions, which makes an important dif-

ference. Many of the possible.solutions (especially the solutioni proposed

by introductory students) may be immediately rejected on the basis of "good-

ness". Thus paths representing inefficient or poorly structured solutions

need not be included in the graph, even though such solutions may be correct

in a strict sense. At most, such solutions will be one of the plausible

wrong approaches. Further, the use of a graph form, as opposed to a tree,

allows maximum common utilization of sub-portions of the graph. These factors

significantly reduce the number of nodes the solution graph must contain, and

enable us to use such a representation.

Student-tutor interaction

The existence of a natural language, interactive dialogue between student

and tutor is an essential part of our tutoring system. It is through this

medium that the student indicates the refinements to be made in achieving a

problem solution, and that the tutor provides hints and comments, and controls

the traversal of the solution graph.

www.manaraa.com

page 6

The PLATO IV author language, TUTOR, provides a facility for dialogue

control which is essentially a simple keyword parsing scheme (see [9] for

details). In general, such a scheme is not adequate for conducting a nat-

ural language discourse; however, the rigid local context provided by the

current position in the solution graph (the only relevant inputs are assoc.

iated with branches leaving the current node) limits the inputs the student

might make, and allows our tutor to "understand" the input and match a branch
in the solution graph a large percentage of the time.

It is unlikely, of course, that succesive student inputs will follow

exactly the sequence expected by the solution graph. At any given node,

some of the meaningful student inputs will match trranches leaving that node,

some will coalesce several levels of the solution graph into a single input,

and some viii match single branches at a greater depth into the graph.

Inclusion of all possible student inputs in the solution graph would cause

a tremendous increase in the number of branches leaving any node. Instead,

we have chosen to include only the most likely student inputs, based on

observation of students solving the problem, and the tutor conducts a

depth-first search of the solution graph in the vicinity of the current

node, attempting to match the student input to a branch further down

the graph. Depth of the search is controlled by information on the aver-

age number of levels spanned by the student's previous inputs.

The tutor assigns "task names" to refinement steps as they are input by

the student, based on the type of the current node in the solution graph. If

the current node is an AND, several tasks will replace the old one, and an

additional digit is added to the task name for each new task. That is,

1.2 figure total cost

becomes

1.2.1 subtract trade -in

1.2.2 add sales tax

On the other hand, if the current node is an OR, the new task simply replaces

the old one, and the task name is unchanged. The student may preface each

task name with an identifying letter if he so desires.

Task names are important for several reasons. Perhaps the most important

is that they provide an easy and precise way for both the student and tutor to

identify a particular task. Thus the tutor can display a "now refining

www.manaraa.com

page 7

task " message so the student is alwsys sure which task is being discussed,

and the student can refer to tasx names in his input. This could be accom-

plished by simply using line numbers on the screen, but task names have the

added advantage of indicating the history and relationship of statements,

without making the underlying solution graph explicit. That is, statements

P.2.3.1.2 and P.2.3.1.3 are brothers, having only recently been derived from

a common father. On the other hand, tasks 3.2 and 4.1 have no common history.

Gries [6) recommends use of indentation to indicate the relationship between

various tasks described in the step-wise refinement process. However, on a

medium with a limited extent in both horizontal and vertical directions (such

as the PLATO IV pies: panel), the use of task names indicates task relation-

ships just as clear_ while simplifying the screen management problem.

Conclusion

It is generally agreed that introductory programming courses are not

sufficiently concerned with teaching problem-solving methods and structured

programming concepts. One way for students to learn these ideas is by fol-

lowing example problem solutions, but there are seldom enough teachers or

graders available to provide such personal attend-ion. Under these conditions,

a CAI tutorial system which uses an interactive dialogue to guide a student

through a top-down solution to a complex programming problem becomes an

attractive idea. This paper has discussed one such system.

The heart of the system is an AND-OR graph representing both the student's

solution process and the solution program for a complex problem. Student and

tutor traverse this graph in the process of solving the problem. There is a

great deal of effort involved in developing Such a solution graph for a sizable

problem. However, such a representation provides several advantages which

make the effort worthwhile, namely:

(1) it allows the tutor to effectively engage in a natural

language dialogue using a simple parsing scheme.

(2) it enables the system to provide detailed comments on

both the student's solution and his problem solving

techniques.

www.manaraa.com

page 8

(Wit allows such a machine tutor to deal with rathte large

problems, providing IvIditional emphasis of the need for

good program structura and proper problem solving methods.

I

www.manaraa.com

Page 9

tqfeygnetri a

Alpert, D. and D. L. Ditzer, "Advances in Computer.based Education",
Science 167 (1970), pp 1582.4.590

2. Dijkstra, E. W., "Notes on. Structured Programming", Technical Report
No. 70-WSK-03, Technological University, Eindhoven, The Netherlands,
1970

/Ms. Tom D. and Peter Freeman, "Design Rationalization of Three BASIC
Systems", Teennical Report No. 38, Department of Information and
Computer Science, University of California, Irvine, November, 1973

Fenichel R. R., J. Weizenbaum and J. C. Yocheleon, "A Program to Teach
Programming", Comm. ACM, Vol. 13 (1970), pp 141-146

Feurzeig, W., P. Wexelblat and R. C. Rosenberg, "mica - A Simple
Instructional Monitor", IEEE Transactions on PM-Machine Systems,
Vol. MMS-11, No. 4, December, 1970, PP 174-180

Gries David, "What Should We Teach in an Introductory Programming
Course", SIGCSE Bulletin, Vol. 6, No. 1, February, 1974, pp 81-89

7. Koffman, E. B. and S. E. Blount, "A Modular System for Generative CAI
in Machine-Language Programming", Technical Report, Computer
Science Group, Electrical Fmgineering Department, University of
Connecticut, December, 1973

Nievergelt, Jurg and Edward M. Reingold, "Automating Introductory
Computer Science Courses", SIGCSE Bulletin, Vol. 5, No. 1,
February, 1973, PP 24-25

9. Tenczar, P. and W. Golden, "Spelling, Word, and Concept Recognition",
CERL Report X-35, Computer-based Education Research Laboratory,
University, of Illinois, October, 1972

10. Ward, Darrell L., "Interactive Directed Programming in Computer
Assisted Instruction", unpublished Ph. D. Dissertation, Texas MM
University, August, 1973

11. Wirth, N., "Program Development by Stepwise Refinement", Comm. ACM,
Vol. 14 (19714 pp 221-227

